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• A hidden sector is responsible for
SUSY breaking.

• Standard gauge interactions transmit
 the SUSY breaking to the MSSM:
• no flavor problem

• Common Features:
• Mass scale for the SUSY breaking

is much lower than mSUGRA
• The lightest supersymmetric particle (LSP)

is the gravitino
• The next-to-lightest supersymmetric particle (NLSP), as well as 

its decay length, determine the experimental signature.
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Gauge-Mediated SUSY Breaking (GMSB)
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Minimal and General Gauge Mediation

• Minimal Gauge Mediation (MGM):
• Simple model with one mass scale for the symmetry breaking (Λ) 

and messengers of mass Mmess consisting of N5 copies of the 5+5 
representation of SU(5).

• Snowmass SPS 8 is an example with one set of messengers
arXiv:hep-ph/0202233v1

• Gluinos much heavier than neutralinos because 

• General Gauge Mediation (GGM):
• Main principle:  if the gauge coupling strength were to go to 

zero, then the SUSY breaking sector and the MSSM sector 
would decouple [Prog.Theor.Phys.Suppl. 177 (2009) 143-158].

• The MGM mass hierarchy between gauginos is not required.

4

Ma =
↵a

4⇡
⇤N5.

http://arxiv.org/abs/hep-ph/0202233v1
http://arxiv.org/abs/hep-ph/0202233v1
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Bino NLSP

• If |M1| << μ and |M1| < |M2|, 
the lightest neutralino is bino-like.

• Assuming  R-parity, two sparticles are 
produced, which cascade down to the 
bino NLSPs 

• The bino decays to a photon or a Z + 
gravitino (we study the photon case)
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tra for studying the colored production of bino, wino, and higgsino NLSPs. Each spectrum

consists of a gluino and the NLSP. We also discuss the production cross-sections and decay

branching ratios that will determine the signal rates in the rest of the paper. Sections 3,

4, and 5 contain our main results, where we show the Tevatron limits and LHC reach for

our bino, wino, and Z-rich higgsino benchmark spectra. Finally, in section 6, we consider

more general higgsino scenarios, with decays to h, �, and Z. In appendix A, we discuss the

consequences of extending our framework to consider a less minimal spectrum, where both

a gluino and squarks contribute to the colored production of wino co-NLSPs.

2 Minimal Spectra for General Neutralino NLSPs

In this section, we describe our minimal benchmark parameter spaces for general neutralino

NLSPs. As discussed in the introduction, we will be taking simplifying limits where the

NLSP is a gauge eigenstate: either bino, wino or higgsino NLSP. We now highlight several

important features of each type of neutralino NLSP, namely the NLSP decay modes and

production channels. For a more detailed discussion, we refer the reader to [11].

A neutralino NLSP decays to X + G̃, where X = �, Z, h, and the di�erent gauge eigen-

states are characterized by having di�erent branching fractions to the di�erent X. The

branching fractions of the bino-like and wino-like neutralino NLSP are shown in figure 2.

We see that binos dominantly decay to photons with branching fraction � cos2 ⇥W , with

a subdominant component to Z’s, with branching fraction � sin2 ⇥W . On the other hand,
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Figure 2: The bino and neutral wino NLSP branching fractions to Z or � plus gravitino [11].

The branching fraction is determined by the weak mixing angle, and, at low mass, by the

phase space suppression of decays to Z’s.
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plot from arXiv:1103.6083v1 [hep-ph]
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Introduction to Universal Extra Dimensions 
(UED) with One Extra Dimension

• Universal:  ALL SM particles propagate into the extra dimensions 
with compactification scale R (1/R ~ 1 TeV)

• quark and gluon KK excitations are pair produced, and cascade 
decay down to Lightest KK Particle:  γ*

• If the “thick brane”, where the SM particles propagate, 
is embedded in a larger space of (4+N)-dim (of size-1 ∼ eV)
where only gravitons propagate:
• gravity mediated decays become possible: 
γ* → γ + Graviton

• Signature:  two high pT photons + ETmiss
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The Diphoton Analysis:  Bino NLSP
using 1.07 fb-1 of data from 2011

Published in: Physics Letters B 710 (2012) 519–537
Builds on 36 pb-1 analysis with 2010 data:
   Eur. Phys. J. C (2011) 71:1744

http://dx.doi.org/10.1016/j.physletb.2012.02.054
http://dx.doi.org/10.1016/j.physletb.2012.02.054
http://www.springerlink.com/content/n8408486u2328244/
http://www.springerlink.com/content/n8408486u2328244/
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Selection Criteria for the Summer 2011 
Analysis: 1.07 fb-1

• Trigger: 2 loose egamma objects, pT > 20 GeV 
• Require two tight photons 

• pT > 25 GeV
• |η| < 1.81 but not in the crack region, 1.37 < |η| < 1.52
• Calorimeter iso: ET (R < 0.2, excluding core) <  5 GeV

- corrected for energy leakage outside of core and pileup.
• Not touching a problematic calorimeter area

• ETmiss > 125 GeV, based on local-calibrated topoclusters + muons
• primary vertex with > 4 tracks
• Reject events with:

• bad jets likely from noise, spikes, cosmics, beam background
• photons that fail LAr cleaning or timing, or electrons that fail timing.
• selected muon with |z0| > 1 mm or |d0| > 0.2 mm wrt PV

8
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Aside:
Discriminating Photons From Electrons

• Due to the many radiation lengths
in front of the calorimeter, a large
fraction of the photons convert.

• Requiring photons to have no tracks
significantly lowers efficiency

• Solution:  reconstruct conversions:
• 2-track conversion:  two tracks 

with electron-like transition 
radiation, consistent with coming from a massless particle

• 1-track conversion:  one track with electron-like transition radiation, 
with missing hits in initial live layers.

• Ambiguity resolution heuristic to choose electron/photon interpretation
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Background Modeling

• Most background is modeled from from data

• Only model ETmiss distribution 
(inspired by similar searches at D0:  [doi:10.1103/PhysRevLett.105.221802 ] )

• Instrumental ETmiss background: di-γ, γ+jets, dijets
• model using “QCD” data samples, normalized to γγ in ETmiss < 20 GeV

• Genuine ETmiss background:
• electron faking photon: W+γ, W+jets, ttbar

• model using eγ data sample, scaled by (e → γ fake rate)/(e efficiency)
• irreducible: Z + γγ, W + γγ

• from MC, scaled to NLO.

• Cosmic background: found to be negligible to signal

10
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The QCD Control Sample

• Model SM γ-jets, dijets, and diphoton using a QCD control sample
• pseudo-photon: a photon that passes loose but fails some tight criteria
• Define QCD control sample:

• Require two egamma objects with pT > 20 GeV at trigger
• at least one pseudo-photon
• Veto events with medium electrons or with two tight photons
• Apply LAr calorimeter timing cut on pseudo-photons to suppress 

cosmics (|Δt| > 10 ns: veto event)
• Normalized in ETmiss < 20 GeV range:  0.8 ± 0.3 (stat)

11
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Systematics to the QCD Modeling

12



Jovan MitrevskiBNL Workshop - May 3, 2012

Systematics to the QCD Modeling

• Normalization systematics: 
• Normalize the QCD control sample to the data sample in various     

10 GeV subranges of ETmiss: 0-10 GeV, 1-11 GeV, ... 18-28 GeV
• Assign a 2.8% error to the normalization 

12
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Systematics to the QCD Modeling

• Normalization systematics: 
• Normalize the QCD control sample to the data sample in various     

10 GeV subranges of ETmiss: 0-10 GeV, 1-11 GeV, ... 18-28 GeV
• Assign a 2.8% error to the normalization 

• Composition systematic:
• The QCD control sample models both samples where there is a jet 

faking a photon and SM diphoton samples.
• The calorimeter response to jets and photons differs, so the ETmiss 

should also differ.
• Z → ee (0 jets) were found to model SM diphoton events well in MC.
• Therefore, substitute a dielectron data sample (0 jets) with a Z 

window cut for QCD sample.
• Assign a systematic of ± 0.6 events to the predicted contribution.

12
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Real ETmiss Background: W+γ, W+jets, ttbar
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ATLAS

electron-photon sample• Use eγ events from data.
• Assumption:  electron fakes a

photon.

• Need to subtract out the Z and
QCD contribution to avoid
double-counting.
• Use QCD sample normalized

to eγ in ETmiss < 20 GeV, 

• Scale the sample by the e→γ 
fake rate / electron efficiency
(~6% in barrel, 17% in endcaps, parametrized in η bins).
• The scale factor was measured in data:  Z tag and probe.

• Predicted background:  3.1 ± 0.5 (stat)
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Systematics to the W+γ, W+jets, ttbar 
Modeling 

• Uncertainty in the e→γ fake rate / electron efficiency scale factor:  10%

• Instead of using the QCD sample to model QCD and Z contamination in 
the eγ control sample, use a dielectron data sample with a Z mass window 
requirement:  systematic of ± 0.06 events.

• Compare the prediction using the eγ control sample to that of MC:
• normalized the MC to the eγ control sample for ETmiss > 40 GeV range
• systematic to the background prediction:  ± 1.41 events.
• Also vary the ETmiss normalization range:  negligible.

14
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The Experimental Results
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Statistical uncertainties only

Total predicted background:
4.1 ± 0.6(stat) ± 1.6(syst) events

Total observed:
5 events

In signal region (ETmiss > 125 GeV)

Table 1: Number of observed �� candidates in various Emiss
T ranges in the data, as well as the expected numbers of SM background events

estimated from the QCD and electron-photon control samples and, for the irreducible Z(� ��̄) + �� and W (� ��) + �� processes, from MC
simulation. Also shown are the expected numbers of signal events from GGM with (mg̃ , m�̃0

1
) = (800, 400) GeV, SPS8 with � = 140TeV,

and UED with 1/R = 1200 GeV. The uncertainties are statistical only. The Emiss
T < 20GeV region (first row) is used to normalise the QCD

background to the number of observed �� candidates.

Emiss
T range Data Predicted background events Expected signal events

[GeV] events Total QCD W/tt̄(� e�) + X Irreducible GGM SPS8 UED
0 - 20 20881 - - - - 0.20± 0.05 0.22± 0.04 0.02± 0.01

20 - 50 6304 5968± 29 5951± 28 13.3± 8.1 3.55± 0.35 0.45± 0.08 1.53± 0.10 0.11± 0.01
50 - 75 86 87.1± 3.3 60.9± 2.8 25.2± 1.7 1.01± 0.16 0.48± 0.08 2.19± 0.12 0.14± 0.01
75 - 100 11 14.7± 1.2 6.7± 0.9 7.4± 0.8 0.52± 0.10 0.75± 0.10 2.09± 0.11 0.15± 0.01

100 - 125 6 4.9± 0.7 1.6± 0.4 3.0± 0.5 0.32± 0.08 1.20± 0.12 2.53± 0.13 0.29± 0.02
> 125 5 4.1± 0.6 0.8± 0.3 3.1± 0.5 0.23± 0.05 17.2± 0.5 12.98± 0.28 9.67± 0.11

from the scaled electron-photon control sample, yielding
a prediction for the contribution to the high-Emiss

T dipho-
ton sample from W + X and tt̄ events. This procedure
led to an estimate of the background from W + X and tt̄
production of 3.1 ± 0.5(stat) events in the signal region.
A systematic uncertainty of 0.06 events was assigned by
using the Z � ee template in place of the QCD template
when subtracting the contamination due to Z � ee and
QCD processes. The contribution from WW events to the
electron-photon control sample was estimated using MC
simulation and found to be negligible.

A parallel study using MC samples of W (� e�)+jets/�
and tt̄(� e�) + jets, rather than the electron-photon con-
trol sample, gave an estimate of 1.8 ± 1.2(stat) back-
ground events. The di�erence was taken as an esti-
mate of the systematic uncertainty, yielding the result
of 3.1 ± 0.5(stat) ± 1.4(syst) events. Also included in
the quoted systematic uncertainty is the relative uncer-
tainty (±10 %) on the probability for an electron to be
mis-reconstructed as a photon.

A small irreducible background of 0.23 ± 0.05(stat) ±
0.04(syst) events from Z(� ��̄) + �� and W (� ��) + ��
events was estimated from MC simulation. The system-
atic uncertainty accounts for variations in the factorisa-
tion and renormalisation scales in the NLO calculations.
The contamination from cosmic-ray muons was found to
be negligible.

Figure 2 shows the Emiss
T spectrum of the selected ��

candidates, superimposed on the estimated backgrounds.
Table 1 summarises the number of observed �� candi-
dates, the expected backgrounds, and three representa-
tive GGM, SPS8, and UED signal expectations, in several
Emiss

T ranges. No indication of an excess at high Emiss
T val-

ues, where the signal is expected to dominate, is observed.

9. Signal e�ciencies and systematic uncertainties

The GGM signal e�ciency was determined using MC
simulation over an area of the GGM parameter space that
ranges from 400GeV to 1200GeV for the gluino mass,

and from 50 GeV to within 20 GeV of the gluino mass for
the neutralino mass. The e�ciency increases smoothly
from 5.5 % to 31 % for (mg̃, m�̃0

1
) = (400, 50)GeV to

(1200, 1100)GeV. The SPS8 signal e�ciency increases
smoothly from 9.2% (� = 80 TeV) to 29.4% (� =
220 TeV). The UED signal e�ciency, also determined
using MC simulation, increases smoothly from 48.9%
(1/R = 1000 GeV) to 52.6% (1/R = 1500 GeV).

The various relative systematic uncertainties on the
GGM, SPS8, and UED signal cross sections are sum-
marised in Table 2 for the chosen GGM, SPS8, and UED
reference points. The uncertainty on the luminosity is
3.7% [46, 47]. The trigger e�ciency of the required dipho-
ton trigger was estimated from the e�ciency of the corre-
sponding single photon trigger, which was estimated using
a bootstrap method [48]. The result is 99.92+0.04

�0.18% for
events passing all selections except the final Emiss

T cut. To
estimate the systematic uncertainty due to the unknown

Table 2: Relative systematic uncertainties on the expected sig-
nal yield for GGM with (mg̃ , m�̃0

1
) = (800, 400) GeV, SPS8 with

� = 140TeV, and UED with 1/R = 1200 GeV. No PDF and scale
uncertainties are given for the UED case as the cross section is eval-
uated to LO.

Source of uncertainty Uncertainty
GGM SPS8 UED

Integrated luminosity 3.7% 3.7% 3.7%
Trigger 0.6% 0.6% 0.6%
Photon identification 3.9% 3.9% 3.7%
Photon isolation 0.6% 0.6% 0.5%
Pile-up 1.3% 1.3% 1.6%
Emiss

T reconstruction and scale 1.7% 5.6% 0.7%
LAr readout 1.0% 0.7% 0.4%
Signal MC statistics 2.9% 2.3% 1.8%
Total signal uncertainty 6.6% 8.3% 6.0%
PDF and scale 31% 5.5% �
Total 32% 10% 6.0%

5

Model-independent CLs limit:
7.1 events
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GGM Signal Samples

• Created a 2D grid in gluino and bino-
like neutralino mass for GGM

• In the simplified model style, the 
gluino production is meant to be a 
placeholder for any strong production. 

• Turn off squark production.

• M2 = 1.5 TeV, μ = 1.5 TeV, tan β = 2

• cτNLSP = 0.1 mm 
(allowed to increase somewhat in low 
bino mass extension, but < 1 mm)

• All soft parameters are set to 1.5 TeV

• Go down to a bino mass of 50 GeV

• Use SUSPECT, SDECAY, and PYTHIA 
for event generation

• Use Prospino 2.1 for cross section 
calculation.

16
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Snowmass SPS8: (arXiv:hep-ph/0202233v1)

• Snowmass SPS8: minimal GMSB (MGM) 
with
• N5 =1,  tanβ=15, μ>0,

Mmess/Λ = 2
• Λ varies in steps of 10 TeV in the 

range 50 - 250 TeV
• Use ISAJET for mass spectrum and 

decay table, then Herwig++ for 
generation.

• Cross sections calculated with 
Prospino. K-factors are 1.1 – 1.5

• In the mass range we are setting limits, 
SPS8 is dominated by weak production.

17

Λ[TeV σ(LO)[pb] σ(NLO)[pb] K factor

50 12.2 18.0 1.482

60 4.38 6.49 1.482

70 1.83 2.69 1.468

80 0.855 1.24 1.446

90 0.436 0.617 1.415

100 0.240 0.331 1.379

110 0.141 0.189 1.341

120 0.0867 0.113 1.302

130 0.0557 0.0707 1.271

140 0.0370 0.0459 1.241

150 0.0252 0.0306 1.215

160 0.0176 0.0210 1.190

170 0.0125 0.0146 1.172

180 8.99×10−3 0.0104 1.158

190 6.57×10−3 7.49×10−3 1.141

200 4.83×10−3 5.47×10−3 1.131

210 3.58×10−3 4.02×10−3 1.123

220 2.68×10−3 2.99×10−3 1.114

230 2.02×10−3 2.23×10−3 1.107

240 1.53×10−3 1.68×10−3 1.100

250 1.16×10−3 1.27×10−3 1.096

Table 4: The total LO and NLO cross sections and derived K factors for the SPS8 signal points.

Signal 1/R [GeV] Cross section [pb] γγ B.R.

1000 0.133 100%

1100 0.0521 95%

1200 0.0205 90%

1250 0.0129 83%

1300 0.00803 75%

1350 0.00498 67%

1400 0.00312 60%

1500 0.00120 50%

Table 5: UED signal cross sections and branching ratios for the γγ final state for different 1/R values,

with ΛR = 20, N = 6 and MD = 5 TeV for proton-proton collisions at Ecm = 7TeV. MC samples (10000

events each) were produced for all 1/R values.
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UED Grid Points

• A UED grid was simulated at various 1/R values, and the following 
parameters:
• ΛR = 20,  N = 6,  MD = 5 TeV

• Note that the to photon branching ratio goes down as 1/R goes up:  
particles start decaying gravitationally directly instead of always going 
to a γ* first.

18
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50 12.2 18.0 1.482

60 4.38 6.49 1.482
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Table 4: The total LO and NLO cross sections and derived K factors for the SPS8 signal points.

Signal 1/R [GeV] Cross section [pb] γγ B.R.

1000 0.133 100%

1100 0.0521 95%

1200 0.0205 90%

1250 0.0129 83%

1300 0.00803 75%

1350 0.00498 67%

1400 0.00312 60%

1500 0.00120 50%

Table 5: UED signal cross sections and branching ratios for the γγ final state for different 1/R values,

with ΛR = 20, N = 6 and MD = 5 TeV for proton-proton collisions at Ecm = 7TeV. MC samples (10000

events each) were produced for all 1/R values.
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Systematics

• PDF errors are estimated by 
weighting 44 error PDFs from 
CTEQ6.6m and using the Hessian 
method

• Scale: factorization and renormal-
ization scale ×2, ×1/2

• Photon ID/Iso: systematics related 
to data/MC differences and 
correction.

• Also includes extra material

• ETmiss: due to topocluster energy 
scale and resolution uncertainties.

• Pileup uncertainty by varying MC 
pileup configuration

19

Representative points:
  GGM with mgluino/mneutralino = 800/400 GeV
  SPS8 with Λ = 140 TeV
  UED with 1/R = 1200 GeV

Table 1: Number of observed �� candidates in various Emiss
T ranges in the data, as well as the expected numbers of SM background events

estimated from the QCD and electron-photon control samples and, for the irreducible Z(� ��̄) + �� and W (� ��) + �� processes, from MC
simulation. Also shown are the expected numbers of signal events from GGM with (mg̃ , m�̃0

1
) = (800, 400) GeV, SPS8 with � = 140TeV,

and UED with 1/R = 1200 GeV. The uncertainties are statistical only. The Emiss
T < 20GeV region (first row) is used to normalise the QCD

background to the number of observed �� candidates.

Emiss
T range Data Predicted background events Expected signal events

[GeV] events Total QCD W/tt̄(� e�) + X Irreducible GGM SPS8 UED
0 - 20 20881 - - - - 0.20± 0.05 0.22± 0.04 0.02± 0.01

20 - 50 6304 5968± 29 5951± 28 13.3± 8.1 3.55± 0.35 0.45± 0.08 1.53± 0.10 0.11± 0.01
50 - 75 86 87.1± 3.3 60.9± 2.8 25.2± 1.7 1.01± 0.16 0.48± 0.08 2.19± 0.12 0.14± 0.01
75 - 100 11 14.7± 1.2 6.7± 0.9 7.4± 0.8 0.52± 0.10 0.75± 0.10 2.09± 0.11 0.15± 0.01

100 - 125 6 4.9± 0.7 1.6± 0.4 3.0± 0.5 0.32± 0.08 1.20± 0.12 2.53± 0.13 0.29± 0.02
> 125 5 4.1± 0.6 0.8± 0.3 3.1± 0.5 0.23± 0.05 17.2± 0.5 12.98± 0.28 9.67± 0.11

from the scaled electron-photon control sample, yielding
a prediction for the contribution to the high-Emiss

T dipho-
ton sample from W + X and tt̄ events. This procedure
led to an estimate of the background from W + X and tt̄
production of 3.1 ± 0.5(stat) events in the signal region.
A systematic uncertainty of 0.06 events was assigned by
using the Z � ee template in place of the QCD template
when subtracting the contamination due to Z � ee and
QCD processes. The contribution from WW events to the
electron-photon control sample was estimated using MC
simulation and found to be negligible.

A parallel study using MC samples of W (� e�)+jets/�
and tt̄(� e�) + jets, rather than the electron-photon con-
trol sample, gave an estimate of 1.8 ± 1.2(stat) back-
ground events. The di�erence was taken as an esti-
mate of the systematic uncertainty, yielding the result
of 3.1 ± 0.5(stat) ± 1.4(syst) events. Also included in
the quoted systematic uncertainty is the relative uncer-
tainty (±10 %) on the probability for an electron to be
mis-reconstructed as a photon.

A small irreducible background of 0.23 ± 0.05(stat) ±
0.04(syst) events from Z(� ��̄) + �� and W (� ��) + ��
events was estimated from MC simulation. The system-
atic uncertainty accounts for variations in the factorisa-
tion and renormalisation scales in the NLO calculations.
The contamination from cosmic-ray muons was found to
be negligible.

Figure 2 shows the Emiss
T spectrum of the selected ��

candidates, superimposed on the estimated backgrounds.
Table 1 summarises the number of observed �� candi-
dates, the expected backgrounds, and three representa-
tive GGM, SPS8, and UED signal expectations, in several
Emiss

T ranges. No indication of an excess at high Emiss
T val-

ues, where the signal is expected to dominate, is observed.

9. Signal e�ciencies and systematic uncertainties

The GGM signal e�ciency was determined using MC
simulation over an area of the GGM parameter space that
ranges from 400GeV to 1200GeV for the gluino mass,

and from 50 GeV to within 20 GeV of the gluino mass for
the neutralino mass. The e�ciency increases smoothly
from 5.5 % to 31 % for (mg̃, m�̃0

1
) = (400, 50)GeV to

(1200, 1100)GeV. The SPS8 signal e�ciency increases
smoothly from 9.2% (� = 80 TeV) to 29.4% (� =
220 TeV). The UED signal e�ciency, also determined
using MC simulation, increases smoothly from 48.9%
(1/R = 1000 GeV) to 52.6% (1/R = 1500 GeV).

The various relative systematic uncertainties on the
GGM, SPS8, and UED signal cross sections are sum-
marised in Table 2 for the chosen GGM, SPS8, and UED
reference points. The uncertainty on the luminosity is
3.7% [46, 47]. The trigger e�ciency of the required dipho-
ton trigger was estimated from the e�ciency of the corre-
sponding single photon trigger, which was estimated using
a bootstrap method [48]. The result is 99.92+0.04

�0.18% for
events passing all selections except the final Emiss

T cut. To
estimate the systematic uncertainty due to the unknown

Table 2: Relative systematic uncertainties on the expected sig-
nal yield for GGM with (mg̃ , m�̃0

1
) = (800, 400) GeV, SPS8 with

� = 140TeV, and UED with 1/R = 1200 GeV. No PDF and scale
uncertainties are given for the UED case as the cross section is eval-
uated to LO.

Source of uncertainty Uncertainty
GGM SPS8 UED

Integrated luminosity 3.7% 3.7% 3.7%
Trigger 0.6% 0.6% 0.6%
Photon identification 3.9% 3.9% 3.7%
Photon isolation 0.6% 0.6% 0.5%
Pile-up 1.3% 1.3% 1.6%
Emiss

T reconstruction and scale 1.7% 5.6% 0.7%
LAr readout 1.0% 0.7% 0.4%
Signal MC statistics 2.9% 2.3% 1.8%
Total signal uncertainty 6.6% 8.3% 6.0%
PDF and scale 31% 5.5% �
Total 32% 10% 6.0%
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GGM Results

• We use CLs

• σ < 22 − 129 fb  for GGM model
• σ < 30 fb when mbino ≥ 150 GeV
• Can be used to give ideas for 

models with similar parameters. 
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mgluino > 805 GeV
for mbino > 50 GeV  
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SPS8 Benchmark Result

• Using CLs
• Λ > 145 TeV at 95% CL

(Λ > 150 TeV expected)
• D0 has set a limit of 
Λ > 124 TeV 
(arXiv:1008.2133v1)

• σ < 27 – 91 fb
• This is mostly probing 

electroweak production
• Best current limit.
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UED Result and Statistical Interpretation

• CLs is used 

• Model specific limit: 
1/R > 1.23 TeV at 95% CL
(1/R > 1.24 TeV expected)

• Cross section limit:
σ < 15 − 27 fb

• Previous ATLAS limit:
1/R < 961 GeV  
[arXiv:1107.0561v2 [hep-ex]]
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Analysis Summary
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Analysis Summary

• This is a search for γγ + ETmiss events in 1.07 fb-1 of ATLAS data from 
2011, with GMSB and UED interpretations.
• Published:  Physics Letters B 710 (2012) 519–537

• Background is estimated mainly from data:
4.1 ± 0.6(stat) ± 1.6(sys) for ETmiss > 125 GeV  (5 observed)

• Model-independent limit:  7.1 events.

23

http://dx.doi.org/10.1016/j.physletb.2012.02.054
http://dx.doi.org/10.1016/j.physletb.2012.02.054


Jovan MitrevskiBNL Workshop - May 3, 2012

Analysis Summary

• This is a search for γγ + ETmiss events in 1.07 fb-1 of ATLAS data from 
2011, with GMSB and UED interpretations.
• Published:  Physics Letters B 710 (2012) 519–537

• Background is estimated mainly from data:
4.1 ± 0.6(stat) ± 1.6(sys) for ETmiss > 125 GeV  (5 observed)

• Model-independent limit:  7.1 events.

• Results are interpreted for GGM and SPS8 with a bino-like NLSP, 
and for UED models:
• GGM: Mgluino > 805 GeV for Mbino > 50 GeV
• SPS8: Λ > 145 TeV
• UED: 1/R > 1.23 TeV
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Optimizations for 5 fb-1 Analysis
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Optimizations for 5 fb-1 Analysis

• Electrons faking photons are the main background. Now with more 
data, we can afford to tighten it up. We are looking at:
• Vetoing photons if the electron interpretation passes the medium 

electron criteria.
• Vetoing photons if the reconstructed conversion is in the pixels.
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Optimizations for 5 fb-1 Analysis

• Electrons faking photons are the main background. Now with more 
data, we can afford to tighten it up. We are looking at:
• Vetoing photons if the electron interpretation passes the medium 

electron criteria.
• Vetoing photons if the reconstructed conversion is in the pixels.

• Different grid points have different features:
• In the GGM grid, the gluino and bino can be close in mass: event has 

few extra objects (jets) but has large photon pT and ETmiss.
• In the GGM grid, the bino mass can be low: the event has limited 

photon pT and ETmiss, but energetic jets
• Electroweak production in SPS8 points:  lower overall scale.
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Optimizations for 5 fb-1 Analysis

• Electrons faking photons are the main background. Now with more 
data, we can afford to tighten it up. We are looking at:
• Vetoing photons if the electron interpretation passes the medium 

electron criteria.
• Vetoing photons if the reconstructed conversion is in the pixels.

• Different grid points have different features:
• In the GGM grid, the gluino and bino can be close in mass: event has 

few extra objects (jets) but has large photon pT and ETmiss.
• In the GGM grid, the bino mass can be low: the event has limited 

photon pT and ETmiss, but energetic jets
• Electroweak production in SPS8 points:  lower overall scale.

• The goal is to remain as model-independent as possible.
24



Other Potential Analyses

• Wino NLSP:  photon + lepton

• Bino/Higgsino NLSP:  photon + b-jets

• Nonpointing photons (generally bino NLSP)

• Aside on non-photon GMSB searches



Jovan MitrevskiBNL Workshop - May 3, 2012

Wino NLSP

• If |M2| << μ and |M2| < |M1|, 
the lightest neutralino is wino-like

• The mass differences between W± and 
W0 is small: co-NLSP.

• Decays from each side of chain are:
• γ + ETmiss

• Z + ETmiss

• W± + ETmiss
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tra for studying the colored production of bino, wino, and higgsino NLSPs. Each spectrum

consists of a gluino and the NLSP. We also discuss the production cross-sections and decay

branching ratios that will determine the signal rates in the rest of the paper. Sections 3,

4, and 5 contain our main results, where we show the Tevatron limits and LHC reach for

our bino, wino, and Z-rich higgsino benchmark spectra. Finally, in section 6, we consider

more general higgsino scenarios, with decays to h, �, and Z. In appendix A, we discuss the

consequences of extending our framework to consider a less minimal spectrum, where both

a gluino and squarks contribute to the colored production of wino co-NLSPs.

2 Minimal Spectra for General Neutralino NLSPs

In this section, we describe our minimal benchmark parameter spaces for general neutralino

NLSPs. As discussed in the introduction, we will be taking simplifying limits where the

NLSP is a gauge eigenstate: either bino, wino or higgsino NLSP. We now highlight several

important features of each type of neutralino NLSP, namely the NLSP decay modes and

production channels. For a more detailed discussion, we refer the reader to [11].

A neutralino NLSP decays to X + G̃, where X = �, Z, h, and the di�erent gauge eigen-

states are characterized by having di�erent branching fractions to the di�erent X. The

branching fractions of the bino-like and wino-like neutralino NLSP are shown in figure 2.

We see that binos dominantly decay to photons with branching fraction � cos2 ⇥W , with

a subdominant component to Z’s, with branching fraction � sin2 ⇥W . On the other hand,

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

mB⌅

B
.R
.

Bino Decays

⇥ � G
⌅

Cos2⇤W

Z � G
⌅

Sin2⇤W

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

mW⌅

B
.R
.

Neutral Wino Decays

⇥ � G
⌅

Cos2⇤W

Z � G
⌅

Sin2⇤W

Figure 2: The bino and neutral wino NLSP branching fractions to Z or � plus gravitino [11].

The branching fraction is determined by the weak mixing angle, and, at low mass, by the

phase space suppression of decays to Z’s.

4

• Also an interesting channel for 
model-independent searches:
e.g., technicolor signal:  hep-ph/
0702167v2

http://arxiv.org/abs/hep-ph/0702167v2
http://arxiv.org/abs/hep-ph/0702167v2
http://arxiv.org/abs/hep-ph/0702167v2
http://arxiv.org/abs/hep-ph/0702167v2
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Wino NLSP:  Potential Search Channel

• Standard jet+ETmiss analyses can 
be re-interpreted to produce 
competitive limits for strong 
production

• A lepton + photon search can 
target weak production.
• CMS has a result with 35 pb-1.

• Main backgrounds:
• SM Wγ
• ttbar and ttbar+γ
• W+jets, Z+γ, Z+jets
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Figure 6: The Tevatron limit (left) and LHC reach (right), for our wino co-NLSP bench-

mark. At the Tevatron, we see that the l±⇥ (purple), ⇥⇥ (red), and jets plus MET (green)

searches are complementary, with each search dominating the limit in di�erent parts of the

gluino/wino mass plane. At the LHC, we show the reach of our proposed ⇥⇥ and l±⇥ searches,

compared to the CMS �T search, with 35 pb�1 and 1 fb�1. For the ⇥⇥ search, we allow the

background to vary from 1 - 10 fb. For the l±⇥ search, we vary the background from 1/2

to 2 times our estimate of 1.43 fb. Backgrounds at this level do not matter at 35 fb�1, but

they lead to the purple band at 1 fb, where the dotted line corresponds to a background of

1.43 fb.

the left side of figure 6. For the l±⇥ search, we have raised the missing energy cut from

25 to 50 GeV using the �ET distributions in [34], as this has been shown to improve the

signal significance [11]. We see that the three searches are complementary, with jets+�ET

dominating at high wino mass; l+⇥+ �ET winning at low wino mass, because it probes direct

electroweak production in addition to strong production; and ⇥⇥ + �ET setting the strongest

limit at intermediate wino masses. We note that we have also checked the Tevatron limit

from same-sign dileptons, using the 1 fb�1 search by CDF [49], and the limit is weaker than

the channels discussed above, due to the relatively low branching ratio.
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electroweak
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plot from arXiv:1103.6083v1 [hep-ph]
Joshua T. Ruderman and David Shih
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Bino / Higgsino NLSP

• It is possible for a neutralino to be a bino-higgsino admixture:
• photons on one decay chain
• b-jets on the other

• But also, γ + b-jet(s) is a particularly interesting channel:  this is 
being pursued as a signature search. 

• ttbar / ttbar + γ is the main background

28
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Nonpointing Photons

• The decay of the NLSP to the gravitino is not prompt for a certain 
range of parameters:

• Assuming a bino-like NLSP, if the decay length is long enough to 
be measurable but not that long that the bino exits the inner 
detector, one can have a signal of nonpointing photons.

• Have a few handles:
• LAr calorimeter timing
• Calorimeter pointing
• Calorimeter-tracker pointing for conversions
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Aside: GMSB searches without photons

• GMSB does not require there to be photons in the final state.
• stau NLSP decaying to taus:

• ≥ 2 taus: arXiv:1203.6580v1 [hep-ex]
• ≥ 1 tau: ATLAS-CONF-2012-005

• stable stau NLSP:  PLB 703 (2011) 428
• dilepton search:  ATLAS-CONF-2011-156
• higgsino-like neutralino NLSP decaying to Z 

• ATLAS-CONF-2012-047
• (and stop decaying to neutralino + b):  ATLAS-CONF-2012-036
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Conclusion

• ATLAS is searching for new physics in photons + ETmiss channels.
• The primary, though not exclusive, theoretical framework is GGM

• Nevertheless, we try to make the results as model-independent as 
we can.

• We tend to use simplified models and only make selections on the 
primary features of the model.

• We are doing our part to push up the limits for strong production.
• We were also among the first ATLAS analyses looking for SUSY 

weak production.
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Backup

33
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Mixing of States

• The gauge eigenstates are not necessarily mass eigenstates.

• SUSY requires at least two Higgs doublets, so SUSY partners:
  

• The neutral gauginos and higgsinos                             mix to form the 
neutralinos                          with the following mixing matrix:

• There is a similar mixing for the charged gauginos and higgsinos

• When I talk about a bino or wino NLSP, it is really saying that      is 
made up mostly of     or       gauge eigenstates.
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GGM Results with 2010 Data

• CLs is used: model-independent 95% 
CL upper limit of 3.0 events 

• CMS results from:  https://
twiki.cern.ch/twiki/pub/CMSPublic/
PhysicsResultsSUS10002/
table_mass_limits.txt
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UED Result and Statistical Interpretation:
2010 Data

• CLs is used:  model-independent 
95% CL upper limit of 3.0 events 

• Model specific limit: 
1/R > 961 GeV

• Cross section limit:
σ < 0.18 − 0.23 pb
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Latest D0 Result (arXiv:1008.2133v1)

• In MGM, D0 set a limit of 
mχ > 175 GeV in SPS8 
framework.

• Current ATLAS analysis, if 
interpreted in the SPS8 
trajectory, would produce a 
limit of mχ > 124 GeV

• 210 pb-1 would be needed to 
match the D0 sensitivity
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2010 CMS Result: arXiv:1103.0953v1 [hep-
ex]

• No excess of events with 
ETmiss > 50 GeV

• cross section limit between 
0.3 and 1.1 pb at the 95% CL 
across.

• Extracted a contour while 
varying the gluino and squark 
masses
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Latest CMS results: CMS PAS SUS-12-001
Diphoton analysis, bino-like NLSP
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Latest CMS results: CMS PAS SUS-12-001
Single photon analysis, bino-like NLSP
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Latest CMS results: CMS PAS SUS-12-001
wino-like NLSP
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CMS 35 pb-1 lepton+photon results
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Latest CMS results: CMS PAS SUS-12-001
UED
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Older UED Results

• For UED, D0 set a limit of 
R−1> 477 GeV 

44

• ATLAS set a limit of 
R-1 > 729 GeV 
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GSMB and UED Photon pT distributions
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isEM discriminating variables for photons
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November 9, 2010 – 15 : 04 DRAFT 4

Category Description DV Loose Tight
Acceptance |�| < 2.37, 1.37 < |�| < 1.52 excluded – X
Hadronic leakage Ratio of ET in the first sampling of the hadronic

calorimeter to ET of the EM cluster (used over the
ranges |�| < 0.8 and |�| > 1.37)

Rhad1 X X

Ratio of ET in all the hadronic calorimeter to ET of
the EM cluster (used over the range 0.8 < |�| < 1.37)

Rhad X X

EM Middle layer Ratio between the sum ES 2
3�7 of the energies of the

cells contained in a 3�7 � � ⇥ rectangle (measured in
cell units), and the sum ES 2

7�7 of the cell energies in a
7�7 rectangle, both centered around the cluster seed

R� X X

Lateral width of the shower in the � direction w�2 X X
Ratio between the sum ES 2

3�3 of the energies of the
cells contained in a 3�3 � � ⇥ rectangle (measured in
cell units), and the sum ES 2

3�7 of the cell energies in a
3�7 rectangle, both centered around the cluster seed

R⇥ X

EM Strip layer Lateral shower width for three strips around maxi-
mum strip

ws 3 X

Total lateral shower width ws tot X
Fraction of energy outside core of three central strips
but within seven strips

Fside X

Di⇥erence between the energy of the strip with the
second largest energy deposit and the energy of the
strip with the smallest energy deposit between the
two leading strips

�E X

Ratio of the energy di⇥erence associated with the
largest and second largest energy deposits over the
sum of these energies

Eratio X

Table 1: Discriminating variables used for loose and tight photon identification cuts.
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Jet Cleaning
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The e→γ Fake Rate

• Use tag and probe based on Z events:
• tag: Medium electron, etcone20_corrected < 5 GeV, and fired 

g20_loose
• probe: egamma object that has fired g20_loose

• Let e = efficiency for true electron to satisfy electron criteria
• Let f = efficiency for true electron to satisfy photon criteria
• The scale factor (s) that the eg sample needs to be scaled is then:

• Background subtraction can be done on the numerator and 
denominator. Use a Voigt function + exponential.
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s = f
e = N

pass photon

/N
probe

N
pass electron

/N
probe

= N
pass photon

N
pass electron
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GMSB Cross Sections
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August 25, 2011 – 19 : 35 DRAFT 13

Λ[TeV σ(LO)[pb] σ(NLO)[pb] K factor

50 12.2 18.0 1.482

60 4.38 6.49 1.482

70 1.83 2.69 1.468

80 0.855 1.24 1.446

90 0.436 0.617 1.415

100 0.240 0.331 1.379

110 0.141 0.189 1.341

120 0.0867 0.113 1.302

130 0.0557 0.0707 1.271

140 0.0370 0.0459 1.241

150 0.0252 0.0306 1.215

160 0.0176 0.0210 1.190

170 0.0125 0.0146 1.172

180 8.99×10−3 0.0104 1.158

190 6.57×10−3 7.49×10−3 1.141

200 4.83×10−3 5.47×10−3 1.131

210 3.58×10−3 4.02×10−3 1.123

220 2.68×10−3 2.99×10−3 1.114

230 2.02×10−3 2.23×10−3 1.107

240 1.53×10−3 1.68×10−3 1.100

250 1.16×10−3 1.27×10−3 1.096

Table 4: The total LO and NLO cross sections and derived K factors for the SPS8 signal points.

Signal 1/R [GeV] Cross section [pb] γγ B.R.

1000 0.133 100%

1100 0.0521 95%

1200 0.0205 90%

1250 0.0129 83%

1300 0.00803 75%

1350 0.00498 67%

1400 0.00312 60%

1500 0.00120 50%

Table 5: UED signal cross sections and branching ratios for the γγ final state for different 1/R values,

with ΛR = 20, N = 6 and MD = 5 TeV for proton-proton collisions at Ecm = 7TeV. MC samples (10000

events each) were produced for all 1/R values.
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Irreducible Real ETmiss background 

• Z + γγ and W + γγ samples are modeled using Madgraph MC 
samples.

• K-factors were applied based on arXiv:1107.3149 [hep-ph] and 
Phys. Rev. D83 (2011) 114035.

• 7.5% scale uncertainty assigned to Z (→νν)+ γγ.

50

Sample K-factor Yield (events)

Z (→νν)+ γγ 2.0 ± 0.3 0.23 ± 0.06

W (→ ℓν) + γγ 3 ± 3 < 0.06

http://arxiv.org/abs/1107.3149
http://arxiv.org/abs/1107.3149
http://arxiv.org/abs/1103.4613
http://arxiv.org/abs/1103.4613
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Cosmic Background Estimate for 2010 
analysis

• Estimated using real cosmic events triggered in empty bunches.

• Look for photons passing same pT and η cuts, but no vertex or jet 
cleaning requirements
• 7395 events with one loose photon, 63 with one tight
• 2 events with two loose photons, 0 with two tight

• Both two-loose photon events mass ETmiss > 125 GeV
• Estimate 0.017 ± 0.012 (statistical errors only) for two tight

• Scaling the results to the number of colliding bunches in our sample, 
and assuming all of the cosmics events would pass the ETmiss cut:
• 0.079 ± 0.056 two-loose, 0.00068 ± 0.00049 two-tight events
• Therefore apply tight timing to QCD sample; negligible for signal
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Acceptance Systematics due to ETmiss:
2010 analysis

52

• Reminder: we use a ETmiss based on the topocluster energies, 
corrected for muon terms.

• Method to determine systematics inspired from W/Z cross section 
and previous UED analyses.
• Topocluster Energy Scale:  scale topocluster energy by 

uncertainty
• Smear Emissx and Emissy for uncertainty due to resolution
• Underlying event uncertainty within statistical error of MC sample
• Muon term uncertainty found to be negligible.

• Total uncertainty: 10.9% to 0.8% (GGM) and 2.1% to 0.9% (UED)
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Minimal Gauge Mediation (MGM)

• Messengers couple to both:
• the ultimate source of SUSY breaking
• the MSSM via the standard gauge interactions

• In the simplest model (Nmess = 1), the messengers form chiral 
supermultiplets (ℓ and q) which couple to a chiral singlet (S)

• S is assumed to acquire a vev, thus breaking the symmetry
• The gaugino masses (at the messenger scale) are given by:

• where                          and there is a suitable normalization for      .
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following description by 
Steven P. Martin in 

arXiv:hep-ph/9709356v5

Wmess = y2S`¯̀+ y3Sqq̄

Ma =
↵a

4⇡
⇤

⇤ ⌘ hFSi / hSi ↵a

http://arxiv.org/abs/hep-ph/9709356v5
http://arxiv.org/abs/hep-ph/9709356v5
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Introduction to General Gauge Mediation

• Main principle:  if the gauge coupling strength were to go to zero, 
then the SUSY breaking sector and the MSSM sector would 
decouple.

• This results in the following requirements:
• Flavor universality among the sfermion masses
• Certain sum rules are followed
• Small A terms
• Lightest supersymmetric particle (LSP): Gravitino

• The MGM mass hierarchy between the gauginos is not required.
• The NLSP flavor is much less restricted.
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P. Meade, N. Seiberg, D. Shih
Prog.Theor.Phys.Suppl. 177 (2009) 143-158 

http://dx.doi.org/10.1143/PTPS.177.143
http://dx.doi.org/10.1143/PTPS.177.143
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Introduction to Universal Extra Dimensions 
(UED)

• Universal:  ALL SM particles propagate into the extra dimensions (δ = 
1; 1/R∼1TeV)

• n=1,2,3,… Kaluza Klein (KK) excitations for each SM particle (n=0)
• R: compactification scale
• Mass degeneracy mn2=n2/R2 + mSM2  lifted by radiative corrections.
• quark and gluon KK excitations cascade decay down to Lightest KK 

Particle:  γ*
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Cross Sections for Wino Co-NLSP
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FIG. 2: � � Br of some promising final states with a wino-like NLSP.
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Electron/Photon Ambiguity Resolution

• egamma cluster has matched trackParticle?
• no:  → Photon (Author 4)
• yes:  has matched conversion vertex?
• no:  is electron track bad (TRTSA, E/p > 10, or pT < 2 GeV)?
• yes:  → Photon (alternate criteria)
• no:  → Electron
• yes:  is the electron track (one of) the tracks from the conversion 

vertex?
• yes:  Single or double-track conversion?
• single:  → Photon
• double:  Are there either 0 or 2 b-layer hits (vs 1)
• yes:  → Photon
• no:  → is electron track bad?
• yes:  → Photon (alternate criteria)
• no:  → Electron

• no:  is the electron track pT > vector sum of conversion track pTs?
• yes:  → is electron track bad?
• yes:  → Photon (alternate criteria)
• no:  → Electron
• no:  → Photon

Glossing over dead 
b-layer modules
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More on conversions
(2008 JINST 3 S08003)
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Figure 10.21: Fraction of energy lost on aver-
age by electrons with pT = 25 GeV as a func-
tion of |h |, when exiting the pixel, the SCT
and the inner-detector tracking volumes. The
fraction of energy lost is not a strong function
of the electron energy. For |h | > 2.2, there is
no TRT material, hence the SCT and TRT lines
merge.

Figure 10.22: Probability for a photon to
have converted as a function of radius for
different values of |h |, shown for photons
with pT > 1 GeV in minimum-bias events. The
probability is not a strong function of the pho-
ton energy.

10.2.5 Particle identification, reconstruction of electrons and photon conversions

The reconstruction of electrons and of photon conversions is a particular challenge for the inner
detector, since electrons have lost on average between 20 and 50% of their energy (depending on
|h |) when they leave the SCT, as illustrated in figure 10.21. In the same region, between 10%
and 50% of photons convert into an electron-positron pair, as illustrated in figure 10.22.

The TRT plays a central role in electron identification, cross-checking and complementing
the calorimeter, especially at energies below 25 GeV. In addition, the TRT contributes to the re-
construction and identification of electron track segments from photon conversions down to 1 GeV
and of electrons which have radiated a large fraction of their energy in the silicon layers.

By fitting electron tracks in such a way as to allow for bremsstrahlung, it is possible to im-
prove the reconstructed track parameters, as shown for |h |> 1.5 in figure 10.23 for two examples of
bremsstrahlung recovery algorithms. These algorithms rely exclusively on the inner-detector infor-
mation and therefore provide significant improvements only for electron energies below ⇠ 25 GeV
(see section 10.4.2 for a discussion of bremsstrahlung recovery using also the position information
of the electromagnetic calorimeter). The dynamic-noise-adjustment (DNA) method extrapolates
track segments to the next silicon detector layer. If there is a significant c2 contribution, com-
patible with a hard bremsstrahlung, the energy loss is estimated and an additional noise term is
included in the Kalman filter [254]. The Gaussian-sum filter (GSF) is a non-linear generalisation
of the Kalman filter, which takes into account non-Gaussian noise by modelling it as a weighted
sum of Gaussian components and therefore acts as a weighted sum of Kalman filters operating in
parallel [255]. Figure 10.24 shows the improvements from bremsstrahlung recovery for the recon-
structed J/y ! ee mass. Without any bremsstrahlung recovery, only 50% of events are recon-
structed within ±500 MeV of the nominal J/y mass, whereas with the use of the bremsstrahlung
recovery, this fraction increases to approximately 60% for both algorithms.
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Figure 10.42: Average energy loss in GeV
as a function of |h | for electrons with an en-
ergy of 100 GeV. The results are shown be-
fore the presampler (open circles) and the strip
layer (crosses).

Figure 10.43: Fraction of photons converting
at a radius of below 80 cm (115 cm) in open
(full) circles as a function of |h |.

material itself) and to a large fraction of photons converting, as shown in figure 10.43 (see also fig-
ure 10.22 for details on the photon conversion probability in the inner-detector material).

Electron and photon reconstruction is seeded using a sliding-window algorithm with a win-
dow size corresponding to 5 ⇥ 5 cells in the middle layer of the electromagnetic calorimeter
(see table 1.3 for a detailed description of the granularity and h-coverage of the electromagnetic
calorimeter). A cluster of fixed size is then reconstructed around this seed. For electrons, the en-
ergy in the barrel electromagnetic calorimeter is collected over an area corresponding to 3⇥ 7 cells
in the middle layer or 0.075 ⇥ 0.175 in Dh ⇥ Df . This choice optimises the balance between the
conflicting requirements of collecting all the energy even in the case of hard bremsstrahlung and
of preserving the energy resolution by minimising the contributions from noise and pile-up. For
unconverted photons, adequate performance is obtained by limiting the area to 3 ⇥ 5 cells in the
middle layer, whereas converted photons are treated like electrons. Finally, for the end-cap electro-
magnetic calorimeters, an optimal area of 5 ⇥ 5 cells in layer 2 has been chosen for both electrons
and photons.

Position corrections are applied as a first step in the precise reconstruction of the electro-
magnetic cluster. Corrections for modulations of the local energy response as a function of the
extrapolated impact point of the electron in both h and f are shown in figures 10.44 and 10.45,
respectively. These corrections do not modify the global energy scale and are rather small in terms
of the relative response: typically, the h-variation is, minimum to maximum, around 1%, whereas
the f -modulation correction due to the accordion structure of the absorbers is, minimum to maxi-
mum, around 0.4%. The parabolic component of this latter correction is smaller than the one in h
because of the energy sharing between adjacent cells in f .

The most important corrections to optimise at the same time the energy resolution and the
linearity of the response are incorporated using h-dependent longitudinal weights, similarly to
what is described for the electromagnetic calorimeter test-beam results in section 5.7.1:

E = s(h)[c(h)+w0(h) · EPS +Estrips +Emiddle +w3(h) · Eback], (10.1)
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Figure 4.1: Plan view of a quarter-section of the ATLAS inner detector showing each of the major
detector elements with its active dimensions and envelopes. The labels PP1, PPB1 and PPF1
indicate the patch-panels for the ID services.

The above operating specifications imply requirements on the alignment precision which are
summarised in table 4.1 and which serve as stringent upper limits on the silicon-module build
precision, the TRT straw-tube position, and the measured module placement accuracy and stability.
This leads to:

(a) a good build accuracy with radiation-tolerant materials having adequate detector stability and
well understood position reproducibility following repeated cycling between temperatures
of �20�C and +20�C, and a temperature uniformity on the structure and module mechanics
which minimises thermal distortions;

(b) an ability to monitor the position of the detector elements using charged tracks and, for the
SCT, laser interferometric monitoring [62];

(c) a trade-off between the low material budget needed for optimal performance and the sig-
nificant material budget resulting from a stable mechanical structure with the services of a
highly granular detector.

The inner-detector performance requirements imply the need for a stability between alignment
periods which is high compared with the alignment precision. Quantitatively, the track precision
should not deteriorate by more than 20% between alignment periods.
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GGM PDF and Scale Uncertainties

62

m(g̃) [GeV] PDF Scale Total

400 0.12 0.16 0.20

500 0.15 0.17 0.22

550 0.17 0.18 0.24

600 0.18 0.18 0.25

650 0.19 0.18 0.26

700 0.21 0.18 0.27

750 0.23 0.19 0.30

800 0.25 0.19 0.31

850 0.27 0.20 0.33

900 0.29 0.20 0.35

1000 0.33 0.21 0.39

1100 0.38 0.22 0.44

1200 0.44 0.23 0.49

Table 22: Summary of the PDF and scale relative uncertainties on the GGM signal cross sections. The

average values between positive and negative errors are shown. The right most column represents the

total errors of the PDF and scale uncertainties, calculated with the square root of quadratic sum of the

two components.

SUSY Scale Uncertainties The scale uncertainty is evaluated by changing the factorization and renor-

malization scales by a factor of 2 or 1/2 in the Prospino calculations. The nominal scale is given by

Q = m(g̃), which is a solo scale factor in the used process. The uncertainties are estimated simply by

comparing Prospino NLO cross section values obtained with or without scale variations. In the case of

GGM they are of the order of 20% and shown in Table 22. In the case of SPS8 they are of the order of

5% and shown in Table 23.

Table 22 summarizes the contributions from both PDF and Scale uncertainties for different gluino

masses in the case of GGM. Table 23 summarizes the contributions from both PDF and Scale uncertain-

ties for the different Λ values.

UEDScale Uncertainties The UED cross section calculation is LO and in this case, scale uncertainties

are not very important. Nonetheless, we estimate shifts in the LO cross section by varying the scale of

αs. These results are subsequently only used to estimate by how much the exclusion limit is degraded

and not to estimate the final limit.

The UED production cross sections depend on αs where the scale Q
2 has been chosen to be 1/R2. If

the scale is varied from 0.25 × 1/R2 to 4× 1/R2, the cross section for 1/R=1200 GeV varies by +9% and
−4.5% respectively.

9.4 Summary

The systematic uncertainties as described above are summarized in Table 24 for the GGM and SPS8

scenario and in Table 25 for the UED scenario. As shown above some of the systematic uncertainties

studied depend strongly on kinematics and are excepted to differ between GGM and UED. In these cases

a range is given, which is ordered from low to high in the relevant scales, i.e. m(g̃),m(χ̃0
1
), Λ and 1/R in

the case of GGM, SPS8 and UED, respectively.

The total uncertainty on the acceptance for the GGM scenario, without the signal uncertainty from

PDF and scale variations, ranges from 6.3% to 15%. The luminosity, photon and EmissT systematic uncer-
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